z-logo
open-access-imgOpen Access
Influence of Pathogen Type on Neonatal Sepsis Biomarkers
Author(s) -
Lyudmila Akhmaltdinova,
Svetlana Kolesnichenko,
Alyona Lavrinenko,
Irina Kadyrova,
Olga Avdienko,
Lyudmila Panibratec
Publication year - 2021
Publication title -
international journal of inflammation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.106
H-Index - 33
eISSN - 2090-8040
pISSN - 2042-0099
DOI - 10.1155/2021/1009231
Subject(s) - medicine , neonatal sepsis , sepsis , pathogen , intensive care medicine , immunology
Understanding immunoregulation in newborns can help to determine the pathophysiology of neonatal sepsis and will contribute to improve the diagnosis, prognosis, and treatment and remains an urgent and unmet medical need to understand hyperinflammation or hypoinflammation associated with sepsis in newborns. This study included infants (up to 4 days old). The “sepsis” criteria was a positive blood culture. C-reactive protein demonstrates a strong dependence on the pathogen etiology. Therefore, its diagnostic odds ratio in Gram-positive bacteremia was 2.7 and the sensitivity was 45%, while Gram-negative was 15.0 and 81.8%, respectively. A neutrophil-lymphocyte ratio above 1 and thrombocytopenia below 50 ∗ 10 9 cells/L generally do not depend on the type of pathogen and have a specificity of 95%; however, the sensitivity of these markers is low. nCD64 demonstrated good analytical performance and was equally discriminated in both Gram (+) and Gram (−) cultures. The sensitivity was 87.5–89%, and the specificity was 65%. The HLA-DR and programmed cell death protein study found that activation-deactivation processes in systemic infection is different at points of application depending on the type of pathogen: Gram-positive infections showed various ways of activation of monocytes (by reducing suppressive signals) and lymphocytes (an increase in activation signals), and Gram-negative pathogens were most commonly involved in suppressing monocytic activation. Thus, the difference in the bacteremia model can partially explain the problems with the high variability of immunologic markers in neonatal sepsis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom