z-logo
open-access-imgOpen Access
Selection and Configuration of Sorption Isotherm Models in Soils Using Artificial Bees Guided by the Particle Swarm
Author(s) -
Tadikonda Venkata Bharat
Publication year - 2017
Publication title -
advances in artificial intelligence
Language(s) - English
Resource type - Journals
eISSN - 1687-7489
pISSN - 1687-7470
DOI - 10.1155/2017/3497652
Subject(s) - solver , computer science , particle swarm optimization , selection (genetic algorithm) , convergence (economics) , local optimum , mathematical optimization , algorithm , biological system , mathematics , machine learning , economics , biology , economic growth
A precise estimation of isotherm model parameters and selection of isotherms from the measured data are essential for the fate and transport of toxic contaminants in the environment. Nonlinear least-square techniques are widely used for fitting the isotherm model on the experimental data. However, such conventional techniques pose several limitations in the parameter estimation and the choice of appropriate isotherm model as shown in this paper. It is demonstrated in the present work that the classical deterministic techniques are sensitive to the initial guess and thus the performance is impeded by the presence of local optima. A novel solver based on modified artificial bee-colony (MABC) algorithm is proposed in this work for the selection and configuration of appropriate sorption isotherms. The performance of the proposed solver is compared with the other three solvers based on swarm intelligence for model parameter estimation using measured data from 21 soils. Performance comparison of developed solvers on the measured data reveals that the proposed solver demonstrates excellent convergence capabilities due to the superior exploration-exploitation abilities. The estimated solutions by the proposed solver are almost identical to the mean fitness values obtained over 20 independent runs. The advantages of the proposed solver are presented

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom