z-logo
open-access-imgOpen Access
Energy-Efficient Data Recovery via Greedy Algorithm for Wireless Sensor Networks
Author(s) -
Zhiqiang Zou,
Zeting Li,
Shu Shen,
Ruchuan Wang
Publication year - 2016
Publication title -
international journal of distributed sensor networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 53
eISSN - 1550-1477
pISSN - 1550-1329
DOI - 10.1155/2016/7256396
Subject(s) - computer science , wireless sensor network , compressed sensing , greedy algorithm , energy consumption , algorithm , cluster analysis , gaussian , efficient energy use , energy (signal processing) , sampling (signal processing) , data collection , data mining , computer network , detector , artificial intelligence , ecology , telecommunications , statistics , physics , mathematics , quantum mechanics , electrical engineering , biology , engineering
Accelerating energy consumption and increasing data traffic have become prominent in large-scale wireless sensor networks (WSNs). Compressive sensing (CS) can recover data through the collection of a small number of samples with energy efficiency. General CS theory has several limitations when applied to WSNs because of the high complexity of its l1-based conventional convex optimization algorithm and the large storage space required by its Gaussian random observation matrix. Thus, we propose a novel solution that allows the use of CS for compressive sampling and online recovery of large data sets in actual WSN scenarios. The l0-based greedy algorithm for data recovery in WSNs is adopted and combined with a newly designed measurement matrix that is based on LEACH clustering algorithm integrated into a new framework called data acquisition framework of compressive sampling and online recovery (DAF_CSOR). Furthermore, we study three different greedy algorithms under DAF_CSOR. Results of evaluation experiments show that the proposed sparsity-adaptive DAF_CSOR is relatively optimal in terms of recovery accuracy. In terms of overall energy consumption and network lifetime, DAF_CSOR exhibits a certain advantage over conventional methods.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom