z-logo
open-access-imgOpen Access
Characteristics of Highly Birefringent Photonic Crystal Fiber with Defected Core and Equilateral Pentagon Architecture
Author(s) -
Fei Yu,
Zhenpeng Wang,
Wenhao Yang,
Chongyang Lv
Publication year - 2016
Publication title -
advances in optoelectronics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.118
H-Index - 21
eISSN - 1687-5648
pISSN - 1687-563X
DOI - 10.1155/2016/5301372
Subject(s) - birefringence , materials science , electric field , algorithm , optics , physics , computer science , quantum mechanics
A novel high birefringence and nearly zero dispersion-flattened photonic crystal fiber (PCF) with elliptical defected core (E-DC) and equilateral pentagonal architecture is designed. By applying the full-vector finite element method (FEM), the characteristics of electric field distribution, birefringence, and chromatic dispersion of the proposed E-DC PCF are numerically investigated in detail. The simulation results reveal that the proposed PCF can realize high birefringence, ranging from 10-3 to 10-2 orders of magnitude, owing to the embedded elliptical air hole in the core center. However, the existence of the elliptical air hole gives rise to an extraordinary electric field distribution, where a V-shaped notch appears and the size of the V-shaped notch varies at different operating wavelengths. Also, the mode field diameter is estimated to be about 2 μm, which implies the small effective mode area and highly nonlinear coefficient. Furthermore, the investigation of the chromatic dispersion characteristic shows that the introduction of the elliptical air hole is helpful to control the chromatic dispersion to be negative or nearly zero flattened over a wide wavelength bandwidth

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom