z-logo
open-access-imgOpen Access
A Wi-Fi Indoor Localization Strategy Using Particle Swarm Optimization Based Artificial Neural Networks
Author(s) -
Nan Li,
Jiabin Chen,
Yuan Yan,
Xiaochun Tian,
Yongqiang Han,
Xia Mingzhe
Publication year - 2016
Publication title -
international journal of distributed sensor networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 53
eISSN - 1550-1477
pISSN - 1550-1329
DOI - 10.1155/2016/4583147
Subject(s) - computer science , particle swarm optimization , artificial neural network , cluster analysis , real time computing , artificial intelligence , position (finance) , mobile phone , swarm behaviour , machine learning , telecommunications , finance , economics
Wi-Fi based indoor localization system has attracted considerable attention due to the growing need for location based service (LBS) and the rapid development of mobile phones. However, most existing Wi-Fi based indoor positioning systems suffer from the low accuracy due to the dynamic variation of indoor environment and the time delay caused by the time consumption to provide the position. In this paper, we propose an indoor localization system using the affinity propagation (AP) clustering algorithm and the particle swarm optimization based artificial neural network (PSO-ANN). The clustering technique is adopted to reduce the maximum location error and enhance the prediction performance of PSO-ANN model. And the strong learning ability of PSO-ANN model enables the proposed system to adapt to the complicated indoor environment. Meanwhile, the fast learning and prediction speed of the PSO-ANN would greatly reduce the time consumption. Thus, with the combined strategy, we can reduce the positioning error and shorten the prediction time. We implement the proposed system on a mobile phone and the positioning results show that our algorithm can provide a higher localization accuracy and significantly improves the prediction speed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom