Some Nonexistence and Asymptotic Existence Results for Weighing Matrices
Author(s) -
Ebrahim Ghaderpour
Publication year - 2016
Publication title -
international journal of combinatorics
Language(s) - English
Resource type - Journals
eISSN - 1687-9171
pISSN - 1687-9163
DOI - 10.1155/2016/2162849
Subject(s) - algorithm , computer science , artificial intelligence , mathematics
Orthogonal designs and weighing matrices have many applications in areas such as coding theory, cryptography, wireless networking, and communication. In this paper, we first show that if positive integer cannot be written as the sum of three integer squares, then there does not exist any skew-symmetric weighing matrix of order and weight , where is an odd positive integer. Then we show that, for any square , there is an integer such that, for each , there is a symmetric weighing matrix of order and weight . Moreover, we improve some of the asymptotic existence results for weighing matrices obtained by Eades, Geramita, and Seberry.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom