z-logo
open-access-imgOpen Access
Plasmachemical Synthesis of Nanopowders in the System Ti(O,C,N) for Material Structure Modification
Author(s) -
Michael Filkov,
А. В. Колесников
Publication year - 2016
Publication title -
journal of nanoscience
Language(s) - English
Resource type - Journals
eISSN - 2356-749X
pISSN - 2314-6931
DOI - 10.1155/2016/1361436
Subject(s) - materials science , mixing (physics) , nanoparticle , titanium , propane , plasma , analytical chemistry (journal) , jet (fluid) , chemical engineering , nitride , metallurgy , nanotechnology , chemistry , thermodynamics , chromatography , physics , organic chemistry , quantum mechanics , layer (electronics) , engineering
Refractory nanoparticles are finding broad application in manufacturing of materials with enhanced physical properties. Production of carbide, nitride, and carbonitride nanopowders in high volumes is possible in the multijet plasmachemical reactor, where temperature and velocity distributions in reaction zone can be controlled by plasma jet collision angle and mixing chamber geometry. A chemical reactor with three Direct Current (DC) arc plasma jets intersecting at one point was applied for titanium carbonitride synthesis from titanium dioxide, propane-butane mixture, and nitrogen. The influence of process operational parameters on the product chemical and phase composition was investigated. Mixing conditions in the plasma jet collision zone, particles residence time, and temperatures were evaluated with the help of Computational Fluid Dynamics (CFD) simulations. The synthesized nanoparticles have predominantly cubic shape and dimensions in the range 10–200 nm. Phase compositions were represented by oxycarbonitride phases. The amount of free (not chemically bonded) carbon in the product varied in the range 3–12% mass, depending on synthesis conditions

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom