An Efficient Image Denoising Method for Wireless Multimedia Sensor Networks Based on DT-CWT
Author(s) -
Rachid Sammouda,
AbdulMalik S. AlSalman,
Abdu Gumaei,
Nejmeddine Tagoug
Publication year - 2015
Publication title -
international journal of distributed sensor networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 53
eISSN - 1550-1477
pISSN - 1550-1329
DOI - 10.1155/2015/632568
Subject(s) - computer science , wavelet , artificial intelligence , complex wavelet transform , computer vision , wavelet transform , wireless sensor network , discrete wavelet transform , context (archaeology) , noise reduction , wireless , telecommunications , computer network , paleontology , biology
Wireless multimedia sensor network (WMSN) is a developed technology of wireless sensor networks and includes a set of nodes equipped with cameras and other sensors to detect ambient environment and produce multimedia data content. In this context, many types of noises occur due to sensors problems, change of illumination, fog, rain, and other weather conditions. These noises usually degrade the digital images acquired by camera sensors. Image denoising in spatial domain is more difficult and time-consuming for real-time processing of WMSNs applications. In this study, an efficient method based on Dual-Tree Complex Wavelet Transform (DT-CWT) is developed to enhance the image denosing in WMSNs. This method is designed to reduce the image noises by selecting an optimal threshold value estimated from the approximation of wavelet coefficients. In our experiment, the proposed method was tested and compared with standard Discrete Wavelet Transform (DWT) and Stationary Wavelet Transform (SWT) on a set of natural scene images. Better results were achieved by using the DT-CWT in terms of image quality metrics and processing time.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom