z-logo
open-access-imgOpen Access
The Utilization of Imaging Features in the Management of Intraductal Papillary Mucinous Neoplasms
Author(s) -
Stefano Palmucci,
Claudia Trombatore,
Pietro Valerio Foti,
Letizia Antonella Mauro,
Pietro Milone,
Roberto Milazzotto,
Rosalia Latino,
Giacomo Bonanno,
Giuseppe Petrillo,
Antonio Di Cataldo
Publication year - 2014
Publication title -
gastroenterology research and practice
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.622
H-Index - 45
eISSN - 1687-630X
pISSN - 1687-6121
DOI - 10.1155/2014/765451
Subject(s) - medicine , dysplasia , intraductal papillary mucinous neoplasm , pancreatic duct , radiology , pancreas , pathology
Intraductal papillary mucinous neoplasms (IPMNs) represent a group of cystic pancreatic neoplasms with large range of clinical behaviours, ranging from low-grade dysplasia or borderline lesions to invasive carcinomas. They can be grouped into lesions originating from the main pancreatic duct, main duct IPMNs (MD-IPMNs), and lesions which arise from secondary branches of parenchyma, denominated branch-duct IPMNs (BD-IPMNs). Management of these cystic lesions is essentially based on clinical and radiological features. The latter have been very well described in the last fifteen years, with many studies published in literature showing the main radiological features of IPMNs. Currently, the goal of imaging modalities is to identify “high-risk stigmata” or “worrisome feature” in the evaluation of pancreatic cysts. Marked dilatation of the main duct (>1 cm), large size (3–5 cm), and intramural nodules have been associated with increased risk of degeneration. BD-IPMNs could be observed as microcystic or macrocystic in appearance, with or without communication with main duct. Their imaging features are frequently overlapped with cystic neoplasms. The risk of progression for secondary IPMNs is lower, and subsequently an imaging based follow-up is very often proposed for these lesions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom