System Level Design of Reconfigurable Server Farms Using Elliptic Curve Cryptography Processor Engines
Author(s) -
Sangook Moon,
Jongsu Park
Publication year - 2014
Publication title -
journal of applied mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.307
H-Index - 43
eISSN - 1687-0042
pISSN - 1110-757X
DOI - 10.1155/2014/390176
Subject(s) - computer science , verilog , elliptic curve cryptography , systemc , embedded system , processor design , cryptography , microarchitecture , abstraction , register transfer level , field programmable gate array , computer architecture , operating system , encryption , logic synthesis , public key cryptography , logic gate , algorithm , philosophy , epistemology
As today’s hardware architecture becomes more and more complicated, it is getting harder to modify or improve the microarchitecture of a design in register transfer level (RTL). Consequently, traditional methods we have used to develop a design are not capable of coping with complex designs. In this paper, we suggest a way of designing complex digital logic circuits with a soft and advanced type of SystemVerilog at an electronic system level. We apply the concept of design-and-reuse with a high level of abstraction to implement elliptic curve crypto-processor server farms. With the concept of the superior level of abstraction to the RTL used with the traditional HDL design, we successfully achieved the soft implementation of the crypto-processor server farms as well as robust test bench code with trivial effort in the same simulation environment. Otherwise, it could have required error-prone Verilog simulations for the hardware IPs and other time-consuming jobs such as C/SystemC verification for the software, sacrificing more time and effort. In the design of the elliptic curve cryptography processor engine, we propose a 3X faster GF(2m) serial multiplication architecture
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom