z-logo
open-access-imgOpen Access
A Regularization SAA Scheme for a Stochastic Mathematical Program with Complementarity Constraints
Author(s) -
Yuxin Li,
Jie Zhang,
Zun-Quan Xia
Publication year - 2014
Publication title -
journal of applied mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.307
H-Index - 43
eISSN - 1687-0042
pISSN - 1110-757X
DOI - 10.1155/2014/321010
Subject(s) - regularization (linguistics) , complementarity (molecular biology) , mixed complementarity problem , mathematics , mathematical optimization , convergence (economics) , complementarity theory , computer science , artificial intelligence , genetics , physics , nonlinear system , quantum mechanics , economics , biology , economic growth
To reflect uncertain data in practical problems, stochastic versions of the mathematical program with complementarity constraints (MPCC) have drawn much attention in the recent literature. Our concern is the detailed analysis of convergence properties of a regularization sample average approximation (SAA) method for solving a stochastic mathematical program with complementarity constraints (SMPCC). The analysis of this regularization method is carried out in three steps: First, the almost sure convergence of optimal solutions of the regularized SAA problem to that of the true problem is established by the notion of epiconvergence in variational analysis. Second, under MPCC-MFCQ, which is weaker than MPCC-LICQ, we show that any accumulation point of Karash-Kuhn-Tucker points of the regularized SAA problem is almost surely a kind of stationary point of SMPCC as the sample size tends to infinity. Finally, some numerical results are reported to show the efficiency of the method proposed

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom