A Dynamic Users’ Interest Discovery Model with Distributed Inference Algorithm
Author(s) -
Shuo Xu,
Qingwei Shi,
Xiaodong Qiao,
Lijun Zhu,
Han Zhang,
Hanmin Jung,
Seungwoo Lee,
Sung-Pil Choi
Publication year - 2014
Publication title -
international journal of distributed sensor networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 53
eISSN - 1550-1477
pISSN - 1550-1329
DOI - 10.1155/2014/280892
Subject(s) - computer science , inference , gibbs sampling , key (lock) , context (archaeology) , data mining , topic model , machine learning , artificial intelligence , data science , computer security , paleontology , bayesian probability , biology
One of the key issues for providing users user-customized or context-aware services is to automatically detect latent topics, users’ interests, and their changing patterns from large-scale social network information. Most of the current methods are devoted either to discovering static latent topics and users’ interests or to analyzing topic evolution only from intrafeatures of documents, namely, text content, without considering directly extrafeatures of documents such as authors. Moreover, they are applicable only to the case of single processor. To resolve these problems, we propose a dynamic users’ interest discovery model with distributed inference algorithm, named as Distributed Author-Topic over Time (D-AToT) model. The collapsed Gibbs sampling method following the main idea of MapReduce is also utilized for inferring model parameters. The proposed model can discover latent topics and users’ interests, and mine their changing patterns over time. Extensive experimental results on NIPS (Neural Information Processing Systems) dataset show that our D-AToT model is feasible and efficient.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom