z-logo
open-access-imgOpen Access
Multiscale Asymptotic Analysis and Parallel Algorithm of Parabolic Equation in Composite Materials
Author(s) -
Xin Wang,
Xi-liang Duan,
Yang Gao
Publication year - 2014
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2014/217869
Subject(s) - fourier transform , heat equation , mathematics , convergence (economics) , algorithm , domain (mathematical analysis) , frequency domain , inverse , finite element method , mathematical analysis , fourier series , geometry , physics , economics , thermodynamics , economic growth
An efficient parallel multiscale numerical algorithm is proposed for a parabolic equation with rapidly oscillating coefficients representing heat conduction in composite material with periodic configuration. Instead of following the classical multiscale asymptotic expansion method, the Fourier transform in time is first applied to obtain a set of complex-valued elliptic problems in frequency domain. The multiscale asymptotic analysis is presented and multiscale asymptotic solutions are obtained in frequency domain which can be solved in parallel essentially without data communications. The inverse Fourier transform will then recover the approximate solution in time domain. Convergence result is established. Finally, a novel parallel multiscale FEM algorithm is proposed and some numerical examples are reported

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom