z-logo
open-access-imgOpen Access
Feature Selection for Very Short-Term Heavy Rainfall Prediction Using Evolutionary Computation
Author(s) -
Jae-Hyun Seo,
Yong Hee Lee,
Yong-Hyuk Kim
Publication year - 2014
Publication title -
advances in meteorology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.482
H-Index - 32
eISSN - 1687-9317
pISSN - 1687-9309
DOI - 10.1155/2014/203545
Subject(s) - support vector machine , feature selection , differential evolution , kernel (algebra) , artificial intelligence , mathematics , evolutionary algorithm , pattern recognition (psychology) , selection (genetic algorithm) , evolutionary computation , polynomial , set (abstract data type) , machine learning , computer science , mathematical analysis , combinatorics , programming language
We developed a method to predict heavy rainfall in South Korea with a lead time of one to six hours. We modified the AWS data for the recent four years to perform efficient prediction, through normalizing them to numeric values between 0 and 1 and undersampling them by adjusting the sampling sizes of no-heavy-rain to be equal to the size of heavy-rain. Evolutionary algorithms were used to select important features. Discriminant functions, such as support vector machine (SVM), k-nearest neighbors algorithm (k-NN), and variant k-NN (k-VNN), were adopted in discriminant analysis. We divided our modified AWS data into three parts: the training set, ranging from 2007 to 2008, the validation set, 2009, and the test set, 2010. The validation set was used to select an important subset from input features. The main features selected were precipitation sensing and accumulated precipitation for 24 hours. In comparative SVM tests using evolutionary algorithms, the results showed that genetic algorithm was considerably superior to differential evolution. The equitable treatment score of SVM with polynomial kernel was the highest among our experiments on average. k-VNN outperformed k-NN, but it was dominated by SVM with polynomial kernel

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom