z-logo
open-access-imgOpen Access
Effect of C–O Bonding on the Stability and Energetics of High-Energy Nitrogen-Carbon Molecules N10C2 and N16C2
Author(s) -
Douglas L. Strout
Publication year - 2014
Publication title -
advances in chemistry
Language(s) - English
Resource type - Journals
eISSN - 2356-6612
pISSN - 2314-7571
DOI - 10.1155/2014/175384
Subject(s) - nitrogen , molecule , decomposition , carbon fibers , chemistry , crystallography , chemical stability , computational chemistry , materials science , organic chemistry , composite number , composite material
Molecules consisting of nitrogen have been the subject of much attention due to their potential as high-energy materials. Complex molecules consisting entirely of nitrogen can be subject to rapid decomposition, and therefore other atoms are incorporated into the structure to enhance stability. Previous studies have explored the incorporation of carbon atoms into otherwise all-nitrogen cages molecules. The current study involves two such cages, N10C2 and N16C2, whose structures are derived from N12 and N18, respectively. The N10C2 and N16C2 cages in this study are modified by bonding groups O3 and CO3 to determine the effect on the relative energies between the isomers and on the thermodynamic energy release properties. Energetic trends for N10C2 and N16C2 are calculated and discussed

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom