z-logo
open-access-imgOpen Access
Measure-Dependent Stochastic Nonlinear Beam Equations Driven by Fractional Brownian Motion
Author(s) -
Mark A. McKibben
Publication year - 2013
Publication title -
international journal of stochastic analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.19
H-Index - 28
eISSN - 2090-3340
pISSN - 2090-3332
DOI - 10.1155/2013/868301
Subject(s) - mathematics , fractional brownian motion , nonlinear system , mathematical analysis , uniqueness , stochastic partial differential equation , context (archaeology) , brownian motion , stochastic differential equation , measure (data warehouse) , partial differential equation , physics , paleontology , statistics , quantum mechanics , database , computer science , biology
We study a class of nonlinear stochastic partial differential equations arising in the mathematical modeling of the transverse motion of an extensible beam in the plane. Nonlinear forcing terms of functional-type and those dependent upon a family of probability measures are incorporated into the initial-boundary value problem (IBVP), and noise is incorporated into the mathematical description of the phenomenon via a fractional Brownian motion process. The IBVP is subsequently reformulated as an abstract second-order stochastic evolution equation driven by a fractional Brownian motion (fBm) dependent upon a family of probability measures in a real separable Hilbert space and is studied using the tools of cosine function theory, stochastic analysis, and fixed-point theory. Global existence and uniqueness results for mild solutions, continuous dependence estimates, and various approximation results are established and applied in the context of the model

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom