z-logo
open-access-imgOpen Access
Recursive Neural Networks Based on PSO for Image Parsing
Author(s) -
Guorong Cai,
Shui-Li Chen
Publication year - 2013
Publication title -
abstract and applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.228
H-Index - 56
eISSN - 1687-0409
pISSN - 1085-3375
DOI - 10.1155/2013/617618
Subject(s) - recurrent neural network , particle swarm optimization , parsing , broyden–fletcher–goldfarb–shanno algorithm , image (mathematics) , computer science , artificial intelligence , function (biology) , algorithm , pixel , mathematics , artificial neural network , pattern recognition (psychology) , mathematical optimization , computer network , asynchronous communication , evolutionary biology , biology
This paper presents an image parsing algorithm which is based on Particle Swarm Optimization (PSO) and Recursive Neural Networks (RNNs). State-of-the-art method such as traditional RNN-based parsing strategy uses L-BFGS over the complete data for learning the parameters. However, this could cause problems due to the nondifferentiable objective function. In order to solve this problem, the PSO algorithm has been employed to tune the weights of RNN for minimizing the objective. Experimental results obtained on the Stanford background dataset show that our PSO-based training algorithm outperforms traditional RNN, Pixel CRF, region-based energy, simultaneous MRF, and superpixel MRF

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom