Energy Efficiency Maximization through Cooperative Transmit and Receive Antenna Selection for Multicell MU-MIMO System
Author(s) -
Yanjie Dong,
Yinghai Zhang,
Weidong Wang,
Gaofeng Cui,
Yang Yu
Publication year - 2013
Publication title -
international journal of antennas and propagation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.282
H-Index - 37
eISSN - 1687-5877
pISSN - 1687-5869
DOI - 10.1155/2013/589591
Subject(s) - mimo , efficient energy use , computer science , antenna (radio) , overhead (engineering) , heuristic , maximization , channel state information , electronic engineering , mathematical optimization , channel (broadcasting) , computer network , telecommunications , engineering , wireless , electrical engineering , mathematics , artificial intelligence , operating system
The capacity of Multiple Input Multiple Output (MIMO) system is highly related to the number of active antennas. But as the active antenna number increases, the MIMO system will consume more energy. To maximize the energy efficiency of MIMO system, we propose an antenna selection scheme which can maximize the energy efficiency of BS cluster. In the scheme, ergodic energy efficiency is derived according to large scale channel state information (CSI). Based on this ergodic energy efficiency, we introduce a cost function varied with the number of antennas, in which the effect to the energy efficiency of both the serving BS and the neighbor BS is considered. With this function, we can transform the whole system optimization problem to a sectional optimization problem and obtain a suboptimal antenna set using a heuristic algorithm. Simulation results verify that the proposed approach performs better than the comparison schemes in terms of network energy efficiency and achieves 98% network energy efficiency of the centralized antenna selection scheme. Besides, since the proposed scheme does not need the complete CSI of the neighbor BS, it can effectively reduce the signaling overhead
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom