z-logo
open-access-imgOpen Access
Removal Efficiency and Mechanism of Sulfamethoxazole in Aqueous Solution by Bioflocculant MFX
Author(s) -
Jie Xing,
Jixian Yang,
Ang Li,
Fang Ma,
Kexin Liu,
Dan Wu,
Wei Wei
Publication year - 2013
Publication title -
journal of analytical methods in chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.407
H-Index - 25
eISSN - 2090-8865
pISSN - 2090-8873
DOI - 10.1155/2013/568614
Subject(s) - chemistry , aqueous solution , sulfanilamide , trimethoprim , sulfamethoxazole , adsorption , wastewater , chromatography , freundlich equation , nuclear chemistry , organic chemistry , environmental engineering , biochemistry , antibiotics , engineering
Although the treatment technology of sulfamethoxazole has been investigated widely, there are various issues such as the high cost, inefficiency, and secondary pollution which restricted its application. Bioflocculant, as a novel method, is proposed to improve the removal efficiency of PPCPs, which has an advantage over other methods. Bioflocculant MFX, composed by high polymer polysaccharide and protein, is the metabolism product generated and secreted by Klebsiella sp. In this paper, MFX is added to 1 mg/L sulfanilamide aqueous solution substrate, and the removal ratio is evaluated. According to literatures review, for MFX absorption of sulfanilamide, flocculant dosage, coagulant-aid dosage, pH, reaction time, and temperature are considered as influence parameters. The result shows that the optimum condition is 5 mg/L bioflocculant MFX, 0.5 mg/L coagulant aid, initial pH 5, and 1 h reaction time, and the removal efficiency could reach 67.82%. In this condition, MFX could remove 53.27% sulfamethoxazole in domestic wastewater, and the process obeys Freundlich equation. R 2 value equals 0.9641. It is inferred that hydrophobic partitioning is an important factor in determining the adsorption capacity of MFX for sulfamethoxazole solutes in water; meanwhile, some chemical reaction probably occurs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom