
On Some Efficient Techniques for Solving Systems of Nonlinear Equations
Author(s) -
Janak Raj Sharma,
Puneet Gupta
Publication year - 2013
Publication title -
advances in numerical analysis
Language(s) - English
Resource type - Journals
eISSN - 1687-9570
pISSN - 1687-9562
DOI - 10.1155/2013/252798
Subject(s) - convergence (economics) , nonlinear system , newton's method , local convergence , mathematics , iterative method , enhanced data rates for gsm evolution , order (exchange) , third order , mathematical optimization , computer science , telecommunications , philosophy , physics , theology , finance , quantum mechanics , economics , economic growth
We present iterative methods of convergence order three, five, and six for solving systems of nonlinear equations. Third-order method is composed of two steps, namely, Newton iteration as the first step and weighted-Newton iteration as the second step. Fifth and sixth-order methods are composed of three steps of which the first two steps are same as that of the third-order method whereas the third is again a weighted-Newton step. Computational efficiency in its general form is discussed and a comparison between the efficiencies of proposed techniques with existing ones is made. The performance is tested through numerical examples. Moreover, theoretical results concerning order of convergence and computational efficiency are verified in the examples. It is shown that the present methods have an edge over similar existing methods, particularly when applied to large systems of equations
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom