z-logo
open-access-imgOpen Access
Advanced Harmony Search with Ant Colony Optimization for Solving the Traveling Salesman Problem
Author(s) -
Ho-Yoeng Yun,
Sukjae Jeong,
Kyungsup Kim
Publication year - 2013
Publication title -
journal of applied mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.307
H-Index - 43
eISSN - 1687-0042
pISSN - 1110-757X
DOI - 10.1155/2013/123738
Subject(s) - travelling salesman problem , ant colony optimization algorithms , mathematical optimization , harmony search , computer science , local optimum , heuristic , metaheuristic , mathematics , algorithm
We propose a novel heuristic algorithm based on the methods of advanced Harmony Search and Ant Colony Optimization (AHS-ACO) to effectively solve the Traveling Salesman Problem (TSP). The TSP, in general, is well known as an NP-complete problem, whose computational complexity increases exponentially by increasing the number of cities. In our algorithm, Ant Colony Optimization (ACO) is used to search the local optimum in the solution space, followed by the use of the Harmony Search to escape the local optimum determined by the ACO and to move towards a global optimum. Experiments were performed to validate the efficiency of our algorithm through a comparison with other algorithms and the optimum solutions presented in the TSPLIB. The results indicate that our algorithm is capable of generating the optimum solution for most instances in the TSPLIB; moreover, our algorithm found better solutions in two cases (kroB100 and pr144) when compared with the optimum solution presented in the TSPLIB

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom