Group VIB Phospholipase A2Promotes Proliferation of INS-1 Insulinoma Cells and Attenuates Lipid Peroxidation and Apoptosis Induced by Inflammatory Cytokines and Oxidant Agents
Author(s) -
Shunzhong Bao,
Haowei Song,
Min Tan,
Mary Wohltmann,
Jack H. Ladenson,
John Turk
Publication year - 2012
Publication title -
oxidative medicine and cellular longevity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.494
H-Index - 93
eISSN - 1942-0900
pISSN - 1942-0994
DOI - 10.1155/2012/989372
Subject(s) - insulinoma , apoptosis , streptozotocin , endocrinology , oxidative stress , medicine , microbiology and biotechnology , phospholipase a2 , gene knockdown , phospholipase , chemistry , lipid peroxidation , phospholipase a , islet , insulin , biology , biochemistry , diabetes mellitus , enzyme
Group VIB Phospholipase A2 (iPLA2γ) is distributed in membranous organelles in which β-oxidation occurs, that is, mitochondria and peroxisomes, and is expressed by insulin-secreting pancreatic islet β-cells and INS-1 insulinoma cells, which can be injured by inflammatory cytokines, for example, IL-1β and IFN-γ, and by oxidants, for example, streptozotocin (STZ) or t-butyl-hydroperoxide (TBHP), via processes pertinent to mechanisms of β-cell loss in types 1 and 2 diabetes mellitus. We find that incubating INS-1 cells with IL-1β and IFN-γ, with STZ, or with TBHP causes increased expression of iPLA2γ mRNA and protein. We prepared INS-1 knockdown (KD) cell lines with reduced iPLA2γ expression, and they proliferate more slowly than control INS-1 cells and undergo increased membrane peroxidation in response to cytokines or oxidants. Accumulation of oxidized phospholipid molecular species in STZ-treated INS-1 cells was demonstrated by LC/MS/MS scanning, and the levels in iPLA2γ-KD cells exceeded those in control cells. iPLA2γ-KD INS-1 cells also exhibited higher levels of apoptosis than control cells when incubated with STZ or with IL-1β and IFN-γ. These findings suggest that iPLA2γ promotes β-cell proliferation and that its expression is increased during inflammation or oxidative stress as a mechanism to mitigate membrane injury that may enhance β-cell survival
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom