z-logo
open-access-imgOpen Access
Convergence Theorem for a Family of Generalized Asymptotically Nonexpansive Semigroup in Banach Spaces
Author(s) -
Bashir Ali,
Godwin Chidi Ugwunnadi
Publication year - 2012
Publication title -
international journal of mathematics and mathematical sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 39
eISSN - 1687-0425
pISSN - 0161-1712
DOI - 10.1155/2012/986426
Subject(s) - mathematics , banach space , variational inequality , semigroup , uniformly convex space , fixed point , regular polygon , sequence (biology) , convergence (economics) , norm (philosophy) , differentiable function , pure mathematics , uniform continuity , discrete mathematics , lp space , mathematical analysis , eberlein–šmulian theorem , metric space , geometry , political science , law , economics , economic growth , biology , genetics
Let be a real reflexive and strictly convex Banach space with a uniformly Gâteaux differentiable norm. Let ={()∶≥0} be a family of uniformly asymptotically regular generalized asymptotically nonexpansive semigroup of , with functions ,∶[0,∞)→[0,∞). Let ∶=()=∩≥0(())≠∅ and ∶→ be a weakly contractive map. For some positive real numbers and satisfying +>1, let ∶→ be a -strongly accretive and -strictly pseudocontractive map. Let {} be an increasing sequence in [0,∞) with lim→∞=∞, and let {} and {} be sequences in (0,1] satisfying some conditions. Strong convergence of a viscosity iterative sequence to common fixed points of the family of uniformly asymptotically regular asymptotically nonexpansive semigroup, which also solves the variational inequality ⟨(−),(−)⟩≤0, for all ∈, is proved in a framework of a real Banach space

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom