z-logo
open-access-imgOpen Access
Cry-Based Classification of Healthy and Sick Infants Using Adapted Boosting Mixture Learning Method for Gaussian Mixture Models
Author(s) -
Hesam Farsaie Alaie,
Chakib Tadj
Publication year - 2012
Publication title -
modelling and simulation in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.264
H-Index - 20
eISSN - 1687-5591
pISSN - 1687-5605
DOI - 10.1155/2012/983147
Subject(s) - mixture model , pattern recognition (psychology) , mel frequency cepstrum , boosting (machine learning) , binary classification , artificial intelligence , classifier (uml) , binary number , gaussian , computer science , support vector machine , machine learning , feature extraction , mathematics , physics , arithmetic , quantum mechanics
We make use of information inside infant’s cry signal in order to identify the infant’s psychological condition. Gaussian mixture models (GMMs) are applied to distinguish between healthy full-term and premature infants, and those with specific medical problems available in our cry database. Cry pattern for each pathological condition is created by using adapted boosting mixture learning (BML) method to estimate mixture model parameters. In the first experiment, test results demonstrate that the introduced adapted BML method for learning of GMMs has a better performance than conventional EM-based reestimation algorithm as a reference system in multipathological classification task. This newborn cry-based diagnostic system (NCDS) extracted Mel-frequency cepstral coefficients (MFCCs) as a feature vector for cry patterns of newborn infants. In binary classification experiment, the system discriminated a test infant’s cry signal into one of two groups, namely, healthy and pathological based on MFCCs. The binary classifier achieved a true positive rate of 80.77% and a true negative rate of 86.96% which show the ability of the system to correctly identify healthy and diseased infants, respectively

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom