z-logo
open-access-imgOpen Access
Statistically Efficient Construction of α-Risk-Minimizing Portfolio
Author(s) -
Hiroyuki Taniai,
Takayuki Shiohama
Publication year - 2012
Publication title -
advances in decision sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.178
H-Index - 13
eISSN - 2090-3367
pISSN - 2090-3359
DOI - 10.1155/2012/980294
Subject(s) - quantile , estimator , asymptotic distribution , portfolio , portfolio optimization , mathematical optimization , residual , consistency (knowledge bases) , monte carlo method , computer science , mathematics , quantile regression , econometrics , statistics , economics , algorithm , artificial intelligence , financial economics
We propose a semiparametrically efficient estimator for α-risk-minimizing portfolio weights. Based on the work of Bassett et al. (2004), an α-risk-minimizing portfolio optimization is formulated as a linear quantile regression problem. The quantile regression method uses a pseudolikelihood based on an asymmetric Laplace reference density, and asymptotic properties such as consistency and asymptotic normality are obtained. We apply the results of Hallin et al. (2008) to the problem of constructing α-risk-minimizing portfolios using residual signs and ranks and a general reference density. Monte Carlo simulations assess the performance of the proposed method. Empirical applications are also investigated

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom