ARQ Protocols for Two-Way Wireless Relay Systems: Design and Performance Analysis
Author(s) -
Zhenyuan Chen,
Qiushi Gong,
Chao Zhang,
Guo Wei
Publication year - 2012
Publication title -
international journal of distributed sensor networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 53
eISSN - 1550-1477
pISSN - 1550-1329
DOI - 10.1155/2012/980241
Subject(s) - computer science , automatic repeat request , relay , selective repeat arq , hybrid automatic repeat request , computer network , throughput , sliding window protocol , go back n arq , node (physics) , wireless , telecommunications , telecommunications link , engineering , operating system , power (physics) , physics , structural engineering , quantum mechanics , window (computing)
Two-way relay (TWR) communication, a new cooperation paradigm that allows two terminals to share one relay node to communicate with each other in two phases, has played an increasingly valuable role in wireless networks to meet the stringent throughput requirement. In this paper, we focus on the designing of automatic repeat-request (ARQ) protocols for the two-way wireless relay systems. According to different feedback schedules, we propose three basic ARQ protocols to improve the throughput of two-way relay systems, namely, relay-only ARQ (Ro-ARQ), terminal only ARQ (To-ARQ) and relay-terminal ARQ (RT-ARQ). Through analyzing the outage throughput of these three ARQ protocols, it is verified that all three protocols can improve the system performance. In addition, simulation results reveal that the RT-ARQ protocol has the closest performance to the theoretical throughput upperbound among all given methods without severe deterioration on system complexity. Copyright © 2012 Zhenyuan Chen et al.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom