z-logo
open-access-imgOpen Access
Nitrogen Immobilization in Plant Growth Substrates: Clean Chip Residual, Pine Bark, and Peatmoss
Author(s) -
Cheryl R. Boyer,
H. Allen Torbert,
Charles H. Gilliam,
Glenn B. Fain,
Thomas Gallagher,
Jeff L. Sibley
Publication year - 2012
Publication title -
international journal of agronomy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.493
H-Index - 16
eISSN - 1687-8167
pISSN - 1687-8159
DOI - 10.1155/2012/978528
Subject(s) - nitrogen , potting , bark (sound) , chemistry , zoology , horticulture , agronomy , botany , biology , ecology , materials science , organic chemistry , composite material
Rising costs of potting substrates have caused horticultural growers to search for alternative, lower-cost materials. Objectives of this study were to determine the extent of nitrogen immobilization and microbial respiration in a high wood-fiber content substrate, clean chip residual. Microbial activity and nitrogen availability of two screen sizes (0.95 cm and 0.48 cm) of clean chip residual were compared to control treatments of pine bark and peatmoss in a 60-day incubation experiment. Four rates (0, 1, 2, or 3 mg) of supplemental nitrogen were assessed. Peatmoss displayed little microbial respiration over the course of the study, regardless of nitrogen rate; followed by pine bark, 0.95 cm clean chip residual, and 0.48 cm clean chip residual. Respiration increased with increasing nitrogen. Total inorganic nitrogen (plant available nitrogen) was greatest with peatmoss; inorganic nitrogen in other treatments were similar at the 0, 1, and 2 mg supplemental nitrogen rates, while an increase occurred with the highest rate (3 mg). Clean chip residual and pine bark were similar in available nitrogen compared to peatmoss. This study suggests that nitrogen immobilization in substrates composed of clean chip residual is similar to pine bark and can be treated with similar fertilizer amendments during nursery production

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom