z-logo
open-access-imgOpen Access
Stability and Feedback Stabilization of HIV Infection Model with Two Classes of Target Cells
Author(s) -
A. M. Ełaiw,
Ahmed M. Shehata
Publication year - 2012
Publication title -
discrete dynamics in nature and society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.264
H-Index - 39
eISSN - 1607-887X
pISSN - 1026-0226
DOI - 10.1155/2012/963864
Subject(s) - control theory (sociology) , lyapunov function , human immunodeficiency virus (hiv) , robustness (evolution) , nonlinear system , exponential stability , model predictive control , immune system , mathematics , immunology , computer science , biology , control (management) , physics , artificial intelligence , biochemistry , quantum mechanics , gene
We study the stability and feedback stabilization of the uninfected steady state of a human immunodeficiency virus (HIV) infection model. The model is a 6-dimensional nonlinear ODEs that describes the interaction of the HIV with two classes of target cells, CD4+ T cells and macrophages, and takes into account the Cytotoxic T Lymphocytes (CTLs) immune response. Lyapunov function is constructed to establish the global asymptotic stability of the uninfected steady state of the model. In a control system framework, the HIV infection model incorporating the effect of Highly Active AntiRetroviral Therapy (HAART) is considered as a nonlinear control system with drug dose as control input. We developed treatment schedules for HIV-infected patients by using Model Predictive Control (MPC-)based method. The MPC is constructed on the basis of an approximate discrete-time model of the HIV infection model. The MPC is applied to the stabilization of the uninfected steady state of the HIV infection model. Besides model inaccuracies that HIV infection model suffers from, some disturbances/uncertainties from different sources may arise in the modelling. In this work the disturbances are modelled in the HIV infection model as additive bounded disturbances. The robustness of the MPC against small model uncertainties or disturbances is also shown

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom