Nearly Quadratic n‐Derivations on Non‐Archimedean Banach Algebras
Author(s) -
M. Eshaghi Gordji,
Badrkhan Alizadeh,
Young Whan Lee,
Gwang Hui Kim
Publication year - 2012
Publication title -
discrete dynamics in nature and society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.264
H-Index - 39
eISSN - 1607-887X
pISSN - 1026-0226
DOI - 10.1155/2012/961642
Subject(s) - mathematics , quadratic equation , banach algebra , integer (computer science) , pure mathematics , banach space , quadratic function , function (biology) , discrete mathematics , computer science , geometry , evolutionary biology , biology , programming language
Let n>1 be an integer, let A be an algebra, and X be an A-module. A quadratic function D:A→X is called a quadratic n-derivation if D(∏i=1nai)=D(a1)a22⋯an2+a12D(a2)a32⋯an2+⋯+a12a22⋯an−12D(an) for all a1,...,an∈A. We investigate the Hyers-Ulam stability of quadratic n-derivations from non-Archimedean Banach algebras into non-Archimedean Banach modules by using the Banach fixed point theorem
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom