Fourier Analysis of Slow and Fast Image Propagation through Single and Coupled Image Resonators
Author(s) -
Parvin Sultana,
Takahiro Matsumoto,
Makoto Tomita
Publication year - 2012
Publication title -
international journal of optics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.263
H-Index - 17
eISSN - 1687-9392
pISSN - 1687-9384
DOI - 10.1155/2012/960985
Subject(s) - fourier transform , resonator , optics , fourier analysis , streak , coupling (piping) , physics , amplitude , image (mathematics) , spatial frequency , image processing , computer science , materials science , computer vision , quantum mechanics , metallurgy
We applied Fourier space analysis to a comprehensive study of the propagation of pulsed two-dimensional images through single and coupled image resonators. The Fourier method shows that the image can propagate through the resonator successfully as long as the spatial and temporal Fourier components of the image are within the bandwidth of the amplitude and phase transfer functions. The relevant steep dispersion of the cavity can yield delayed or advanced images. The Fourier method reproduces characteristic aspects of the experimental observations of the image propagation, and also predicts new aspects, such as the spatial image profile dependence on the observation time and the coupling strength. To demonstrate the time evolution of the experiment, space- and time-resolved image propagations were performed using a streak camera
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom