z-logo
open-access-imgOpen Access
Development and Control of a Robotic Exoskeleton for Shoulder, Elbow and Forearm Movement Assistance
Author(s) -
Mohammad Habibur Rahman,
Thierry Kittel-Ouimet,
Maarouf Saad,
JeanPierre Kenné,
Philippe S. Archambault
Publication year - 2012
Publication title -
applied bionics and biomechanics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.397
H-Index - 23
eISSN - 1754-2103
pISSN - 1176-2322
DOI - 10.1155/2012/956310
Subject(s) - exoskeleton , rehabilitation , forearm , elbow , physical medicine and rehabilitation , powered exoskeleton , controller (irrigation) , trajectory , engineering , simulation , physical therapy , medicine , surgery , physics , astronomy , agronomy , biology
World health organization reports, annually more than 15 million people worldwide suffer a stroke and cardiovascular disease, among which 85% of stroke patients incur acute arm impairment, and 40% of victims are chronically impaired or permanently disabled. This results a burden on the families, communities and to the country as well. Rehabilitation programs are the main way to promote functional recovery in these individuals. Since the number of such cases is constantly growing and that the duration of treatment is long, an intelligent robot could significantly contribute to the success of these programs. We therefore developed a new 5DoFs robotic exoskeleton named MARSE -5 (motion assistive robotic-exoskeleton for superior extremity) that supposed to be worn on the lateral side of upper arm to rehabilitate and ease the shoulder, elbow and forearm movements. This paper focused on the design, modeling, development and control of the proposed MARSE -5. To control the exoskeleton, a nonlinear sliding mode control (SMC) technique was employed. In experiments, trajectory tracking that corresponds to typical passive rehabilitation exercises was carried out. Experimental results reveal that the controller is able to maneuver the MARSE -5 efficiently to track the desired trajectories.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom