Tracking Regional Tissue Volume and Function Change in Lung Using Image Registration
Author(s) -
Kunlin Cao,
Gary E. Christensen,
Kai Ding,
Kaifang Du,
Maghavan L. Raghavan,
Ryan Amelon,
Kimberly M. Baker,
Eric A. Hoffman,
Joseph M. Reinhardt
Publication year - 2012
Publication title -
international journal of biomedical imaging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.626
H-Index - 41
eISSN - 1687-4196
pISSN - 1687-4188
DOI - 10.1155/2012/956248
Subject(s) - medicine , bronchoalveolar lavage , lung , lung volumes , image registration , nuclear medicine , computer science , artificial intelligence , image (mathematics)
We have previously demonstrated the 24-hour redistribution and reabsorption of bronchoalveolar lavage (BAL) fluid delivered to the lung during a bronchoscopic procedure in normal volunteers. In this work we utilize image-matching procedures to correlate fluid redistribution and reabsorption to changes in regional lung function. Lung CT datasets from six human subjects were used in this study. Each subject was scanned at four time points before and after BAL procedure. Image registration was performed to align images at different time points and different inflation levels. The resulting dense displacement fields were utilized to track tissue volume changes and reveal deformation patterns of local parenchymal tissue quantitatively. The registration accuracy was assessed by measuring landmark matching errors, which were on the order of 1 mm. The results show that quantitative-assessed fluid volume agreed well with bronchoscopist-reported unretrieved BAL volume in the whole lungs (squared linear correlation coefficient was 0.81). The average difference of lung tissue volume at baseline and after 24 hours was around 2%, which indicates that BAL fluid in the lungs was almost absorbed after 24 hours. Regional lung-function changes correlated with the presence of BAL fluid, and regional function returned to baseline as the fluid was reabsorbed.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom