z-logo
open-access-imgOpen Access
CdSe Quantum Dots for Solar Cell Devices
Author(s) -
Abd ElHady B. Kashyout,
Hesham M. A. Soliman,
Marwa Fathy,
Esam A. Gomaa,
Ali A. Zidan
Publication year - 2012
Publication title -
international journal of photoenergy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.426
H-Index - 51
eISSN - 1687-529X
pISSN - 1110-662X
DOI - 10.1155/2012/952610
Subject(s) - quantum dot , materials science , algorithm , high resolution transmission electron microscopy , analytical chemistry (journal) , nanotechnology , chemistry , computer science , chromatography , transmission electron microscopy
CdSe quantum dots have been prepared with different sizes and exploited as inorganic dye to sensitize a wide bandgap TiO2 thin films for QDs solar cells. The synthesis is based on the pyrolysis of organometallic reagents by injection into a hot coordinating solvent. This provides temporally discrete nucleation and permits controlled growth of macroscopic quantities of nanocrystallites. XRD, HRTEM, UV-visible, and PL were used to characterize the synthesized quantum dots. The results showed CdSe quantum dots with sizes ranging from 3 nm to 6 nm which enabled the control of the optical properties and consequently the solar cell performance. Solar cell of 0.08% performance under solar irradiation with a light intensity of 100 mW/cm2 has been obtained. CdSe/TiO2 solar cells without and with using mercaptopropionic acid (MPA) as a linker between CdSe and TiO2 particles despite a of 428 mV, of 0.184 mAcm−2, FF of 0.57, and of 0.05% but with linker despite a of 543 mV, of 0.318 mAcm−2 , FF of 0.48, and of 0.08%, respectively.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom