Remarks on Constitutive Modeling of Nanofluids
Author(s) -
Mehrdad Massoudi,
Tran X. Phuoc
Publication year - 2011
Publication title -
advances in mechanical engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.318
H-Index - 40
eISSN - 1687-8140
pISSN - 1687-8132
DOI - 10.1155/2012/927580
Subject(s) - nanofluid , viscosity , materials science , constitutive equation , thermodynamics , deformation (meteorology) , base (topology) , mechanics , composite material , nanoparticle , nanotechnology , physics , mathematics , mathematical analysis , finite element method
We discuss briefly the constitutive modeling of the stress tensor for nanofluids. In particular, we look at the viscosity of nanofluids containing multiwalled carbon nanotubes (MWCNTs) stabilized by cationic chitosan. MWCNTs can be used either to enhance or reduce the fluid base viscosity depending on their weight fractions. By assuming that MWCNT nanofluids behave as generalized second-grade fluid where the viscosity coefficient depends upon the rate of deformation, a theoretical model is developed. A simplified version of this model, similar to the traditional power-law model, is used in this study. It is observed that the theoretical results agree well with the experimental data
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom