Numerical Algorithms for Computing Eigenvalues of Discontinuous Dirac System Using Sinc-Gaussian Method
Author(s) -
A. H. Bhrawy,
M. M. Tharwat,
A. S. Al-Fhaid
Publication year - 2012
Publication title -
abstract and applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.228
H-Index - 56
eISSN - 1687-0409
pISSN - 1085-3375
DOI - 10.1155/2012/925134
Subject(s) - sinc function , mathematics , eigenvalues and eigenvectors , gaussian , discontinuity (linguistics) , dirac (video compression format) , numerical analysis , algorithm , point (geometry) , mathematical analysis , geometry , quantum mechanics , physics , neutrino
The eigenvalues of a discontinuous regular Dirac systems with transmission conditions at the point of discontinuity are computed using the sinc-Gaussian method. The error analysis of this method for solving discontinuous regular Dirac system is discussed. It shows that the error decays exponentially in terms of the number of involved samples. Therefore, the accuracy of the new method is higher than the classical sinc-method. Numerical results indicating the high accuracy and effectiveness of these algorithms are presented. Comparisons with the classical sinc-method are given
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom