A Crossover Bacterial Foraging Optimization Algorithm
Author(s) -
Rutuparna Panda,
Manoj Kumar Naik
Publication year - 2012
Publication title -
applied computational intelligence and soft computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.371
H-Index - 10
eISSN - 1687-9732
pISSN - 1687-9724
DOI - 10.1155/2012/907853
Subject(s) - crossover , foraging , benchmark (surveying) , computer science , mathematical optimization , genetic algorithm , optimization algorithm , algorithm , artificial intelligence , mathematics , machine learning , biology , ecology , geodesy , geography
This paper presents a modified bacterial foraging optimization algorithm called crossover bacterial foraging optimization algorithm, which inherits the crossover technique of genetic algorithm. This can be used for improvising the evaluation of optimal objective function values. The idea of using crossover mechanism is to search nearby locations by offspring (50 percent of bacteria), because they are randomly produced at different locations. In the traditional bacterial foraging optimization algorithm, search starts from the same locations (50 percent of bacteria are replicated) which is not desirable. Seven different benchmark functions are considered for performance evaluation. Also, comparison with the results of previous methods is presented to reveal the effectiveness of the proposed algorithm
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom