z-logo
open-access-imgOpen Access
Comparison of Constitutive Relationships for Dilute Granular Flow in a Vibrofluidized Cell
Author(s) -
Nadeem Ahmed Sheikh
Publication year - 2012
Publication title -
advances in condensed matter physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.314
H-Index - 26
eISSN - 1687-8124
pISSN - 1687-8108
DOI - 10.1155/2012/906598
Subject(s) - dissipative system , dissipation , mechanics , flow (mathematics) , convection , closure (psychology) , boundary value problem , physics , granular material , classical mechanics , materials science , thermodynamics , quantum mechanics , economics , market economy
We present comparison of two closure models for dissipative flow of granular gas. Initial validation of the models is achieved using MD simulations for a vibrated cell with elastic side walls. With the dissipation at the side walls, convective rolling in the cell is observed. We show that dense inelastic granular gas model exhibits deviations from near elastic model even at low dissipation and dilute conditions. The flow physics shows that the strength of convective roll can be related with the differential dissipations on the side walls. The discrepancy between the two models is significant as we reevaluate the scope of near elastic model in the presence of dissipative boundary conditions

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom