z-logo
open-access-imgOpen Access
Application of a Beamforming Technique to the Measurement of Airfoil Leading Edge Noise
Author(s) -
Thomas Geyer,
Ennes Sarradj,
Jens Giesler
Publication year - 2012
Publication title -
advances in acoustics and vibration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.237
H-Index - 14
eISSN - 1687-627X
pISSN - 1687-6261
DOI - 10.1155/2012/905461
Subject(s) - airfoil , beamforming , noise (video) , acoustics , microphone , microphone array , leading edge , noise measurement , enhanced data rates for gsm evolution , turbulence , engineering , electronic engineering , computer science , noise reduction , physics , telecommunications , aerospace engineering , meteorology , sound pressure , artificial intelligence , image (mathematics)
The present paper describes the use of microphone array technology and beamforming algorithms for the measurement and analysis of noise generated by the interaction of a turbulent flow with the leading edge of an airfoil. Experiments were performed using a setup in an aeroacoustic wind tunnel, where the turbulent inflow is provided by different grids. In order to exactly localize the aeroacoustic noise sources and, moreover, to separate airfoil leading edge noise from grid-generated noise, the selected deconvolution beamforming algorithm is extended to be used on a fully three-dimensional source region. The result of this extended beamforming are three-dimensional mappings of noise source locations. Besides acoustic measurements, the investigation of airfoil leading edge noise requires the measurement of parameters describing the incident turbulence, such as the intensity and a characteristic length scale or time scale. The method used for the determination of these parameters in the present study is explained in detail. To demonstrate the applicability of the extended beamforming algorithm and the experimental setup as a whole, the noise generated at the leading edge of airfoils made of porous materials was measured and compared to that generated at the leading edge of a common nonporous airfoil

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom