z-logo
open-access-imgOpen Access
Development and Evaluation of a Novel Pellet-Based Tablet System for Potential Colon Delivery of Budesonide
Author(s) -
Jaleh Varshosaz,
Jaber Emami,
Naser Tavakoli,
Mohsen Minaiyan,
Nakisa Rahmani,
Farid Abedin Dorkoosh
Publication year - 2012
Publication title -
journal of drug delivery
Language(s) - English
Resource type - Journals
eISSN - 2090-3014
pISSN - 2090-3022
DOI - 10.1155/2012/905191
Subject(s) - budesonide , pellets , pellet , materials science , dosage form , excipient , enteric coating , controlled release , chromatography , chemistry , medicine , nanotechnology , surgery , composite material , corticosteroid
Budesonide, a potent glucocorticoid, is used for the treatment of inflammatory bowel diseases. Current available oral formulations of budesonide have low efficacy against ulcerative colitis because of the premature drug release in the upper part of the gastrointestinal tract. In this paper a pH- and time-controlled colon-targeted pellet-based tablet of budesonide was established. Pellet cores were prepared by extrusion-spheronization method and further coated with xanthan gum (barrier layer), Eudragit NE30D and L30D55 combination (inner layer), and Eudragit FS30 (as enteric layer) sequentially to achieve the required release profile. The coated pellets then compressed into tablets using inert tabletting granules of Cellactose or Pearlitol. Release studies, performed in simulated gastric, intestinal, and colon pH were used in sequence to mimic the gastrointestinal transit. The influence of formulation variables like barrier layer thickness, inner layer composition, and enteric coat thickness on drug release were investigated and the coated pellets that contained 12% weight gain in xanthan gum layer, Eudragit L30D55 and Eudragit NE30D with a ratio of 3 : 7 in inner layer with 30% weight gain and 25% weight gain in Eudragit FS layer were found to protect the drug release in stomach and small intestine and 83.35 ± 2.4 of budesonide was released at 24 h. The drug release from the tablets prepared using 40% Cellactose 80 as tableting excipient was found to be closely similar to that of uncompressed pellets.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom