Asymptotic Normality of a Hurst Parameter Estimator Based on the Modified Allan Variance
Author(s) -
Alessandra Bianchi,
Massimo Campanino,
Irene Crimaldi
Publication year - 2012
Publication title -
international journal of stochastic analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.19
H-Index - 28
eISSN - 2090-3340
pISSN - 2090-3332
DOI - 10.1155/2012/905082
Subject(s) - mathematics , fractional brownian motion , estimator , hurst exponent , allan variance , variance (accounting) , delta method , statistics , brownian motion , standard deviation , accounting , business
In order to estimate the memory parameter of Internet traffic data, it has been recently proposed a log-regression estimator based on the so-called modified Allan variance (MAVAR). Simulations have shown that this estimator achieves higher accuracy and better confidence when compared with other methods. In this paper we present a rigorous study of the MAVAR log-regression estimator. In particular, under the assumption that the signal process is a fractional Brownian motion, we prove that it is consistent and asymptotically normally distributed. Finally, we discuss its connection with the wavelets estimators
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom