z-logo
open-access-imgOpen Access
FluorescenceIn SituHybridization for MicroRNA Detection in Archived Oral Cancer Tissues
Author(s) -
Zonggao Shi,
Jeffrey J. Johnson,
M. Sharon Stack
Publication year - 2012
Publication title -
journal of oncology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.228
H-Index - 54
eISSN - 1687-8469
pISSN - 1687-8450
DOI - 10.1155/2012/903581
Subject(s) - locked nucleic acid , in situ hybridization , microrna , oligonucleotide , cancer , fluorescence in situ hybridization , tissue microarray , nucleic acid , microbiology and biotechnology , rna , pathology , dna , digoxigenin , medicine , computational biology , biology , messenger rna , immunohistochemistry , gene , genetics , chromosome
The noncoding RNA designated as microRNA (miRNA) is a large group of small single-stranded regulatory RNA and has generated wide-spread interest in human disease studies. To facilitate delineating the role of microRNAs in cancer pathology, we sought to explore the feasibility of detecting microRNA expression in formalin-fixed paraffin-embedded (FFPE) tissues. Using FFPE materials, we have compared fluorescent in situ hybridization (FISH) procedures to detect miR-146a with (a) different synthetic probes: regular custom DNA oligonucleotides versus locked nucleic acid (LNA) incorporated DNA oligonucleotides; (b) different reporters for the probes: biotin versus digoxigenin (DIG); (c) different visualization: traditional versus tyramide signal amplification (TSA) system; (d) different blocking reagents for endogenous peroxidase. Finally, we performed miR-146a FISH on a commercially available oral cancer tissue microarray, which contains 40 cases of oral squamous cell carcinoma (OSCC) and 10 cases of normal epithelia from the human oral cavity. A sample FISH protocol for detecting miR-146a is provided. In summary, we have established reliable in situ hybridization procedures for detecting the expression of microRNA in FFPE oral cancer tissues. This method is an important tool for studies on the involvement of microRNA in oral cancer pathology and may have potential prognostic or diagnostic value.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom