z-logo
open-access-imgOpen Access
Photocatalytic Activity of Toluene under UV-LED Light with TiO2Thin Films
Author(s) -
Thammasak Rojviroon,
Apirat Laobuthee,
Sanya Sirivithayapakorn
Publication year - 2012
Publication title -
international journal of photoenergy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.426
H-Index - 51
eISSN - 1687-529X
pISSN - 1110-662X
DOI - 10.1155/2012/898464
Subject(s) - titanium dioxide , materials science , thin film , toluene , nuclear chemistry , analytical chemistry (journal) , chemistry , nanotechnology , composite material , chromatography , organic chemistry
Titanium dioxide (TiO2) and ferric-doped TiO2 (Fe-TiO2) thin films were synthesized on the surface of 304 stainless steel sheets using a simplified sol-gel preparation method. The Fe-TiO2 thin films were prepared with weight-to-volume ratios of /TiO2 of 0.3%, 0.5%, and 0.7%, respectively. The crystalline phase structures of the prepared TiO2 and Fe-TiO2 thin films were entirely anatase. The measured optical band gaps of the TiO2, 0.3% Fe-TiO2, 0.5% Fe-TiO2, and 0.7% Fe-TiO2 thin films were 3.27, 3.28, 3.22, and 2.82 eV, respectively. The grain sizes and other physical properties of the prepared thin films were also reported. The kinetics of the photocatalytic processes under a UV-LED light source could be explained by the Langmuir-Hinshelwood kinetic model with the specific rates of , , , and  , for TiO2, 0.3% Fe-TiO2, 0.5% Fe-TiO2, and 0.7% Fe-TiO2, respectively. An increase in dopant concentration could enhance the photocatalytic activity of toluene decomposition as a result of lower optical band gaps, smaller grain size, and higher surface area

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom