z-logo
open-access-imgOpen Access
The Effect of Applied Stress on Environment-Induced Cracking of Aluminum Alloy 5052-H3 in 0.5 M NaCl Solution
Author(s) -
Osama M. Alyousif,
Rokuro Nishimura
Publication year - 2012
Publication title -
international journal of corrosion
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.312
H-Index - 18
eISSN - 1687-9333
pISSN - 1687-9325
DOI - 10.1155/2012/894875
Subject(s) - materials science , algorithm , computer science
The environment-induced cracking (EIC) of aluminum alloy 5052-H3 was investigated as a function of applied stress and orientation (Longitudinal rolling direction—Transverse: LT and Transverse—Longitudinal rolling direction: TL) in 0.5 M sodium chloride solution (NaCl) using a constant load method. The applied stress dependence of the three parameters (time to failure; tf, steady-state elongation rate, Iss, and transition time at which a linear increase in elongation starts to deviate, tss) obtained from the corrosion elongation curve showed that these relationships were divided into three regions, the stress-dominated region, the EIC- dominated region, and the corrosion-dominated region. Aluminum alloy 5052-H3 with both orientations showed the same EIC behavior. The value of tss/tf in the EIC-dominated region was almost constant with 0.57±0.02 independent of applied stress and orientation. The fracture mode was transgranular for 5052-H3 with both orientations in the EIC-dominated region. The relationships between log Iss and log tf for 5052-H3 in the EIC-dominated region became a good straight line with a slope of −2 independent of orientation

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom