z-logo
open-access-imgOpen Access
QCLAS and CRDS-Based CO Quantification as Aimed at in Breath Measurements
Author(s) -
Javis A. Nwaboh,
Stefan Persijn,
Kathrin Heinrich,
Marcus Sowa,
Peter Hering,
Olav Werhahn
Publication year - 2012
Publication title -
international journal of spectroscopy
Language(s) - English
Resource type - Journals
eISSN - 1687-9457
pISSN - 1687-9449
DOI - 10.1155/2012/894841
Subject(s) - quantum cascade laser , sideband , laser , spectroscopy , cavity ring down spectroscopy , metrology , analytical chemistry (journal) , spectrometer , chemistry , optics , materials science , microwave , chromatography , physics , quantum mechanics
Laser-spectrometric methods to derive absolute and traceable carbon monoxide (CO) amount fractions in exhaled human breath could be of advantage for early disease detection as well as for treatment monitoring. As proof-of-principle laboratory experiment, we employed intra-pulse and continuous wave (cw) quantum cascade laser spectroscopy (QCLAS), both at 4.6 μm. Additional experiments were carried out applying cw cavity ring-down spectroscopy (CRDS) with a CO sideband laser and a QCL. We emphasize metrological data quality objectives, thatis, traceability and uncertainty, which could serve as essential benefits to exhaled breath measurements. The results were evaluated and compared on a 100 μmol/mol CO level using the two QCLAS spectrometers, and the cw CO sideband laser CRDS setup. The relative standard uncertainties of the pulsed and the cw QCLAS CO amount fraction results were ±4.8 and ±2.8%, respectively, that from the CO sideband laser CRDS was ±2.7%. Sensitivities down to a 3 nmol/mol CO level were finally demonstrated and quantified by means of cw CRDS equipped with a QCL yielding standard uncertainties of about ±2.5 that are exclusively limited by the available line strength figure quality. With this study we demonstrate the achieved comparability of CO quantifications, adhering metrological principles

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom