z-logo
open-access-imgOpen Access
Genetic Programming for Automating the Development of Data Management Algorithms in Information Technology Systems
Author(s) -
Gabriel A. Archanjo,
Fernando J. Von Zuben
Publication year - 2012
Publication title -
advances in software engineering
Language(s) - English
Resource type - Journals
eISSN - 1687-8663
pISSN - 1687-8655
DOI - 10.1155/2012/893701
Subject(s) - computer science , data mining , database , focus (optics) , genetic programming , information retrieval , data science , machine learning , optics , physics
Information technology (IT) systems are present in almost all fields of human activity, with emphasis on processing, storage, and handling of datasets. Automated methods to provide access to data stored in databases have been proposed mainly for tasks related to knowledge discovery and data mining (KDD). However, for this purpose, the database is used only to query data in order to find relevant patterns associated with the records. Processes modelled on IT systems should manipulate the records to modify the state of the system. Linear genetic programming for databases (LGPDB) is a tool proposed here for automatic generation of programs that can query, delete, insert, and update records on databases. The obtained results indicate that the LGPDB approach is able to generate programs for effectively modelling processes of IT systems, opening the possibility of automating relevant stages of data manipulation, and thus allowing human programmers to focus on more complex tasks

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom