z-logo
open-access-imgOpen Access
Productivity and Cost of Integrated Harvesting of Wood Chips and Sawlogs in Stand Conversion Operations
Author(s) -
Hunter Harrill,
HanSup Han
Publication year - 2012
Publication title -
international journal of forestry research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.314
H-Index - 8
eISSN - 1687-9376
pISSN - 1687-9368
DOI - 10.1155/2012/893079
Subject(s) - biomass (ecology) , environmental science , tonne , tops , pulp and paper industry , agricultural engineering , productivity , logging , forestry , mathematics , waste management , engineering , agronomy , geography , geometry , macroeconomics , azimuth , economics , biology
This study evaluated the operational performance and cost of an integrated harvesting system that harvested sawlogs and biomass (i.e., energy wood chips) in stand conversion clearcut operations. Douglas-fir (Pseudotsuga menziesii) trees were processed into sawlogs while whole trees of tanoak (Lithocarpus densiflorus), and sub-merchantable materials (small-diameter trees, tops and limbs) were fed directly into a chipper to produce biomass for energy production. A standard time study method was used to determine productivity and costs. Over 26 working days, the integrated system produced 1,316 bone-dry metric tonnes (BDTs) of sawlogs, and 5,415.89 BDT of chips, with an average moisture content of 43.2%. Using the joint products allocation costing method, the costs of the integrated system were $29.87/BDT for biomass and $4.26/BDT for sawlogs. Chipping utilization was as low as 41%, directly affecting production and cost of chipping operation. Single-lane, dirt, spur roads were the most costly road type to transport whole trees to a centralized processing site: transportation costs for biomass and sawlogs were increased by $0.08/BDT and $0.02/BDT, respectively, for every 50 meter increase in traveling distance. Diesel fuel price could raise total system cost for each product by $0.78/BDT and $0.08/BDT for each $0.10/liter increase

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom