Luminescence and Structure of ZnO Grown by Physical Vapor Deposition
Author(s) -
Rafael García,
M. BarbozaFlores,
D. Berman-Mendoza,
R. Rangel-Segura,
O.E. Contreras-López
Publication year - 2012
Publication title -
advances in materials science and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.356
H-Index - 42
eISSN - 1687-8442
pISSN - 1687-8434
DOI - 10.1155/2012/872597
Subject(s) - cathodoluminescence , materials science , luminescence , wurtzite crystal structure , crystallite , chemical vapor deposition , scanning electron microscope , physical vapor deposition , analytical chemistry (journal) , optoelectronics , nanotechnology , thin film , zinc , composite material , metallurgy , chemistry , chromatography
Nanostructured ZnO was deposited on different substrates (Si, SiO2, and Au/SiO2) by an enhanced physical vapor deposition technique that presents excellent luminescent properties. This technique consists in a horizontal quartz tube reactor that uses ultra-high purity Zn and UHP oxygen as precursors. The morphology and structure of ZnO grown in this work were studied by electron microscopy and X-ray diffraction. The XRD patterns revealed the highly crystalline phase of wurtzite polycrystalline structure, with a preferred (1011) growth direction. Room temperature cathodoluminescence studies revealed two features in the luminescence properties of the ZnO obtained by this technique, first a high-intensity narrow peak centered at 390 nm (~3.2 eV) corresponding to a near band-to-band emission, and secondly, a broad peak centered around 517 nm (2.4 eV), the typical green-yellow luminescence, related to an unintentionally doped ZnO
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom