Cooperative Transmission in Cognitive Radio Ad Hoc Networks
Author(s) -
Juncheng Jia,
Shukui Zhang
Publication year - 2012
Publication title -
international journal of distributed sensor networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 53
eISSN - 1550-1477
pISSN - 1550-1329
DOI - 10.1155/2012/863634
Subject(s) - computer science , cognitive radio , computer network , transmission (telecommunications) , relay , node (physics) , resource allocation , cooperative diversity , heuristic , wireless ad hoc network , spectral efficiency , frequency allocation , wireless , physical layer , channel (broadcasting) , fading , telecommunications , power (physics) , physics , structural engineering , quantum mechanics , artificial intelligence , engineering
Cognitive radio technology is the key to realize dynamic spectrum access system and promote the spectrum utilization through exploiting the spectrum holes left by primary users. However, the spatial heterogeneity of spectrum availability imposes special challenges for efficient utilization of the spectrum resources for cognitive radio ad hoc networks (CRAHNs). The cross-layer cooperative transmission scheme is a promising approach to improve the efficiency of spectrum utilization and improve the performance of cognitive radio networks. Such an approach leverages relay-assisted discontiguous OFDM (DOFDM) for data transmission at physical and MAC layers in a basic three-node configuration. With this scheme, a relay node will be selected that can bridge the source and the destination using its common channels between those two nodes. In this paper, we investigate the application of such a cooperative transmission scheme to address the spectrum heterogeneity issue in CRAHNs. In particular, we describe several types of cooperative transmission and formulate a new resource allocation problem with joint relay selection and channel allocation. We propose a heuristic algorithm to solve the resource allocation problem, which is based on the metric of utility-spectrum ratio of transmission groups. Simulations demonstrate the performance improvement of the cooperative transmission over the direct transmission. © Copyright 2012 Juncheng Jia and Shukui Zhang.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom