z-logo
open-access-imgOpen Access
Energy-Model-Based Optimal Communication Systems Design for Wireless Sensor Networks
Author(s) -
Ye Li,
Dengyu Qiao,
Xu Zhao,
Da Xu,
Fen Miao,
Yuwei Zhang
Publication year - 2012
Publication title -
international journal of distributed sensor networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 53
eISSN - 1550-1477
pISSN - 1550-1329
DOI - 10.1155/2012/861704
Subject(s) - computer science , transceiver , baseband , wireless sensor network , frequency shift keying , keying , energy consumption , phase shift keying , wireless , electronic engineering , quadrature amplitude modulation , efficient energy use , energy (signal processing) , bandwidth (computing) , bit error rate , channel (broadcasting) , telecommunications , computer network , electrical engineering , engineering , statistics , mathematics , demodulation
As is widely used in our daily life, wireless sensor network (WSN) is considered as one of the most important technologies of the new century. Although, the sensor nodes are usually battery powered with limited energy sources, the system energy consumption must be minimized in order to extend the life time. Since the energy consumption of transceiver front ends is dominant in the whole sensor nodes, we focus on how to minimize energy consumption by the system level design. According to the applications, we analyze four types of RF architectures: on-off keying (OOK) transceiver, phase-shift keying (PSK) transceiver, quadrature amplitude modulation (QAM) transceiver, and frequency-shift keying (FSK) transceiver which are widely used in WSN and establish the related energy models for each kind of architecture, respectively. We connect the baseband parameters such as modulation level, data rate, bandwidth, and propagation distance. with the energy consumption of RF front end for WSN. Afterwards, through theoretical and numerical analysis in system level, we discuss and conclude how to design optimal energy-quality system in terms of various application scenarios. © 2012 Ye Li et al.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom