Subsurface Lateral Flow in Texture-Contrast (Duplex) Soils and Catchments with Shallow Bedrock
Author(s) -
Marcus Hardie,
RB Doyle,
WE Cotching,
S Lisson
Publication year - 2012
Publication title -
applied and environmental soil science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.431
H-Index - 23
eISSN - 1687-7675
pISSN - 1687-7667
DOI - 10.1155/2012/861358
Subject(s) - bedrock , geology , macropore , soil water , soil science , subsurface flow , drainage , hydrology (agriculture) , geomorphology , groundwater , geotechnical engineering , mesoporous material , ecology , biochemistry , chemistry , biology , catalysis
Development-perched watertables and subsurface lateral flows in texture-contrast soils (duplex) are commonly believed to occur as a consequence of the hydraulic discontinuity between the A and B soil horizons. However, in catchments containing shallow bedrock, subsurface lateral flows result from a combination of preferential flow from the soil surface to the soil—bedrock interface, undulations in the bedrock topography, lateral flow through macropore networks at the soil—bedrock interface, and the influence of antecedent soil moisture on macropore connectivity. Review of literature indicates that some of these processes may also be involved in the development of subsurface lateral flow in texture contrast soils. However, the extent to which these mechanisms can be applied to texture contrast soils requires further field studies. Improved process understanding is required for modelling subsurface lateral flows in order to improve the management of waterlogging, drainage, salinity, and offsite agrochemicals movement
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom